Experimenta/Simulated results of PIN-based for 25GbE SMF 40Km

Xi Huang

www.huawei.com

Supporters

Winston Way, Neophotonics

Content

- 1. Overview
- 2. Simulated results
- 3. Experimental results
- 4. Economic analysis
- 5. Conclusions

Overview

Based on Dr Tamura's proposal, these solutions satisfy link budget of 25 G SMF 40 Km application.

In this proposal, we will evaluate the BER performance and economic aspect based on PIN-solution.

Simulated results of EML+PIN

EML+PIN

Key parameters in VPI simulation model

Parameters	Value	Unit
Responsitivity	$0.85 \sim 0.9$	A/W
PhotodiodeModel	PIN	--
DarkCurrent	$10 \sim 20$	nA
Transimpedance	3500	Ohms
Rx Cutoff Frequency	17	GHz

Results from VPI simulation

- We simulated the EML+PIN solution based on VPI.
- The key parameters are from the real devices which are commercially available.
- Based on our simulated results, the Rx AOP sensitivity of PIN+EML is about -20.2dBm (ER:8.6dB).

Experimental results

Results from HUAWEI

Data from
Tamura_160314e_40Km_25GS MF.pdf

DML+APD

$E R \approx 4 \mathrm{~dB}$

Data from
Tamura_160314e_40Km_25GS MF.pdf

Why does PIN-based solution need to be considered (economic analysis)

EML or DML

Fig. 1 System economic comparison

- For Tx side, two alternatives could be chosen, i.e., EML and DML. EML has TEC usually. So the performance of EML is better than DML under the high-temperature.
- For Rx side, we have also two alternatives, i.e., APD and PIN. Usually, the performance of APD is better than PIN. We should aware the cost difference between APD and PIN is very large currently or even in the future . It is more economical to use PINbased solution if possible.
- To balance cost between Tx side and Rx side which is shown in the left figure, it is better to give priority to select PIN-based solution if the BER performance of PIN satisfies 25G SMF 40 Km application.

Update of Link budget(25GE SMF 40Km)

Benefits:

1. If we shift up 1.4dB in the link budget, both PIN and APD have the opportunity to achieve 25 GE SMF 40 Km
2. We have more selections for both Tx side and Rx side, i.e, EML+APD/ DML+APD/ EML+PIN even DML+PIN could be used for 25 G SMF 40 Km .
3. It is the best choice based on current and future technological state of the art.

We have investigated the device capability on both $T x$ side and $R x$ side. All devices are commercial availably.

1. Based on EML+PIN solution, it is at least 1.0dB margin on Tx side and at least 2.0 dB margin on Rx side.
2. Based on DML+APD solution, the margin on Tx side is limited but the Tx power is large enough for 40 Km scenario.

And the DML optical power can be increased by many technological methods.
3. Based on EML+APD solution, there are usually many margins on both Tx side and Rx side.
4. Based on DML+PIN, the margin is limited, but it also satisfies the 18 dB requirement.

The capability of DML

1. DML optical power analysis

2. For EML devices, there are very large margin for optical power, which is shown before.

Updated Link budget

Conclusions

- In this proposal, we have experimentally demonstrated that EML+PIN and DML+PIN are reliable for 25 G SMF 40 Km ;
- To obtain economic solution, we suggest to add PIN solution as a alternative in Rx side for 25 G SMF 40 Km ;
- We suggest that link budget of SMF 40Km is slightly changed, i.e. shift up 1.4 dB and suitable for all the four solutions, i.e. EML/DML+PIN, EML/DML+APD.

Thank you

Reference: 10GBASE-E solution selection

Table 52-17-10GBASE-E receive characteristics

Description	10GBASE-E	Unit
Signaling speed (nominal) 10GBASE-ER 10GBASE-EW	$\begin{aligned} & 10.3125 \\ & 9.95328 \end{aligned}$	GBd
Signaling speed variation from nominal (max)	± 100	ppm
Center wavelength (range)	1530 to 1565	nm
Average receive power (max)	-1.0	dBm
Average receive power ${ }^{\text {a }}$ (min)	-15.8	dBm
Receiver sensitivity (max) in OMA ${ }^{\text {b }}$	0.039 (-14.1)	$\mathrm{mW}(\mathrm{dBm})$
Receiver Reflectance (max)	-26	dB
Stressed receiver sensitivity (max) in OMA ${ }^{\text {c,d }}$	$0.074(-11.3)$	$\mathrm{mW}(\mathrm{dBm})$
Vertical eye closure penalty ${ }^{\text {e }}$ (min)	2.7	dB
Stressed eye jitter (min) ${ }^{\text {f }}$	0.3	UI pk-pk
Receive electrical 3 dB upper cutoff frequency (max)	12.3	GHz

Economic consideration

1. For 10G BASE-E, the receiver sensitivity is set to -14.1 dBm in Std
2. Test result: DML+APD-based is $-23 . \mathrm{dBm}, \mathrm{EML}+\mathrm{PIN}$ is -17 dBm , DML+PIN is -13 dBm).
3. Economic consideration: 10G PIN is more mature than 10G APD. The mass production is more economic.
4. EML+PIN solution is selected as the only solution for 10GBASE-E.

25GBASE-LR and 25GBASE-ER transmit characteristics

Description	25GBASE-LR	25GBASE-ER	Unit
Signaling rate (range)	$25.78125 \pm 100 \mathrm{ppm}$		GBd
Center wavelength (range)	1295 to 1325	1295 to 1310	nm
Side-mode suppression ratio (SMSR), (min)	30		dB
Average launch power (max)	2	6	dBm
Average launch powera (min)	-7	-0.2	dBm
Optical Modulation Amplitude (OMA)), (max)	2.2	6	dBm
Optical Modulation Amplitude (OMA)), (min)	-4	2.8	dBm
Launch power in OMA minus TDP (min)	-5	1.8	dBm
Transmitter and dispersion penalty (TDP)), (max)	2.7	2.7	dB
Average launch power of OFF transmitter (\max)	-30		dBm
Extinction ratio (min)	3.5	4	dB
RIN200MA (max)	-130		dB/Hz
Optical return loss tolerance (max)	20		dB
Transmitter reflectancec (max)	-12		dB
Transmitter eye mask definition $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, Y1, Y2, Y3\} Hit ratio $5 \times 10-5$ hits per sample.	$\{0.31,0.4,0.45,0.34,0.38,0.4\}$		

25GBASE-LR and 25GBASE-ER receive characteristics

Description	25GBASE-LR	25GBASE-ER	Unit
Signaling rate (range)	$25.78125 \pm 100 \mathrm{ppm}$		GBd
Center wavelength (range)	1295 to 1325 nm		nm
Damage thresholda (min)	5.5	TBD	dBm
Average receive power (max)	2	-5	dBm
Average receive power (min)	-13.3	-18.2	dBm
Receive power (OMA)), (max)	2.2	-5	dBm
Receiver reflectance (max) - 26 dB	-26		dB
Receiver sensitivity (OMA)), (max)	-11.3	-16.2	dBm
$\begin{aligned} & \text { Stressed receiver sensitivity (OMA)), } \\ & (\max)\end{aligned}$	-8.8	TBD	dBm
Vertical eye closure penaltye	-1.9	TBD	dB
Stressed eye J2 Jittere	0.27	TBD	UI
Stressed eye J4 Jittere	0.39	TBD	UI
SRS eye mask definition $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, Y1, Y2, Y3\} Hit ratio $5 \times 10-5$ hits per sample.	$\begin{gathered} \{0.24,0.5,0.5,0.24 \\ 0.24,0.4\} \end{gathered}$	TBD	

